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Unique signatures for Bose-Einstein condensation in the decay luminescence lineshape
of weakly interacting excitons in a potential trap
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We calculate the spatially resolved optical emission spectrum of a weakly interacting Bose gas of excitons
confined in a three dimensional potential trap due to interband transitions involving weak direct and phonon
mediated exciton-photon interactions. Applying the local-density approximation, we show that for a noncon-
densed system the spatiospectral lineshape of the direct process reflects directly the shape of the potential. The
existence of a Bose-Einstein condensate changes the spectrum in a characteristic way so that it directly reflects
the constant chemical potential of the excitons and the renormalization of the quasiparticle excitation spectrum.
Typical examples are given for parameters of the lowest yellow excitons in Cu,O.
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The condensation of bosons into the system ground state
at sufficiently low temperature in thermal equilibrium is one
of the manifestations of quantum nature of matter.! To reach
a sufficient density, the concept of trapping the particles in a
potential well has allowed the realization of atomic Bose-
Einstein condensates.?> Also for bosonic quasiparticles, such
as microcavity polaritons, this concept has been fruitful.* For
excitons, bound electron-hole-pair excitations in semicon-
ductors, which have been the first type of quasiparticles
where Bose-Einstein condensation (BEC) has been predicted
(for an overview, see Ref. 5), the use of potential traps has a
long history. Especially promising have been the exciton
states in the semiconductor cuprous oxide (Cu,O). Due to
their optically forbidden nature, long lifetime are expected
and one should be able to trap a very large number of par-
ticles in quasi thermal equilibrium (see, e.g., Refs. 6 and 7).
However, despite several experimental studies of dense ex-
citon states in this material,>®8-10 none of these resulted in a
clear demonstration of the existence of a Bose condensed
state of excitons. We will show in this Rapid Communication
that a reason for these failures might be a wrong assignment
of the decay luminescence spectrum of an exciton conden-
sate, since all earlier papers used only qualitative arguments
where the condensate has been put by hand into the spec-
trum, but a rigorous calculation of the decay luminescence
spectrum of excitons in a trap under weak exciton-photon
interaction has not been performed. In this Rapid Communi-
cation we will give a calculation based on a mean-field de-
scription of the exciton system, which not only clarifies these
issues but predicts significant changes in the luminescence
spectrum in the presence of a condensate. This will provide
unique criteria for the onset of BEC in an excitonic system.

In the theory of interacting Bose gases, several approxi-
mations have been developed;'""!? for a review see Ref. 13.
The critical temperature for BEC can be roughly approxi-
mated by that of a noninteracting system. Taking the confin-
ing potential to be that of a 3d harmonic oscillator V
=ar?, it is given by

N 1/3
kBTC():hQ()<@) (1)

with Qy=\2a/M being the oscillator frequency, N the total
number of particles in the trap, M the mass of the particles,
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and { the Riemann zeta function. For an exciton mass of
M=2.6m, that represents the mass of the paraexcitons in
Cu,O (Ref. 14) and typical a parameters of exciton traps
(@=0.05 weV/um?, see, e.g., Ref. 6), this results in
£Qy=72 neV and for N=10'" excitons in the trap a
critical temperature of 1.27 K is expected. For the noninter-
acting system, in the condensate all particles are in the
ground state of the oscillator the size of which is
Apse=\h/MQy=0.74 pm. From this it was concluded in
previous investigations that the spatial shrinking of the
luminescence line is an indication of the onset of BEC.%¢
However, for an interacting system this is not the case.
Here the condensate will form a cloud with radius
Ry=V15(Nag/a,,)"> where ag is the s-wave scattering
length,'? which for large N can be much larger than a,j,.
Assuming again N=10'" particles, a temperature of
T=0.5 K, and a scattering length of 2.8ap,'’ the size of the
cloud is Ry=39 um, much larger than the size of the
oscillator ground state and also the de Broglie wavelength
Ng=\27h2/(MkgT) which at T=0.5 K is 65 nm.

Since Ry>a,, >N\, we can apply the local-density ap-
proximation (LDA) or semiclassical approximation.!> Here
all thermodynamic quantities are function of the spatial co-
ordinate. Furthermore, for temperatures not too close to 7,
the Thomas-Fermi approximation'? where the kinetic energy
of the particles in the condensate is neglected, represents a
rather good description of the condensate because the thick-
ness of the layer where it breaks down 6= (aﬁsc/ Ry)'"? (Ref.
13) is only 6=0.15 wm. Therefore, the luminescence spec-
trum will be derived under these two approximations in the
following.

It is by now well established that, at densities far below
the Mott density, excitons can be described as a weakly in-
teracting Bose gas.'®~!® The interaction can be parametrized
by a scattering length ag of the order of the Bohr radius, its
magnitude depending on the details of the spin structure of
the exciton states.

We confine the excitons with an external potential Vi, (r),
which for simplicity will be assumed to be that of a 3d har-
monic oscillator V., =ar?. The statistical theory of such a
weakly interacting system with interaction energy
Uy=4magh?/M in a potential trap is well established for the
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atomic case''!3 and we will shortly review these results,

only. In the standard mean-field theory, one has to solve the
Gross-Pitaevski (GP) equation which reads for 7=0 as

2
T AW) + VOV () + UV ) = () (@)

to obtain the wave function of the condensate W(r) and the
condensate density n,(r)=|¥(r)|> for a given chemical po-
tential w.

The linear response and thus the luminescence spectrum
is represented by the Hartree-Fock-Bogoliubov equations
which we use in the Popov approximation (HFBP), which is
valid also at temperatures around 7.

As discussed earlier, we can apply the LDA or semiclas-
sical approximation. Here the densities of the condensate
n.(r) and of the thermal excitons in excited states ny(r) and
the Bogoliubov amplitudes are local functions u(p,r),
v(p,r) that solve the coupled equations

L(p,r)  Upnr) \(u(p,r) u(p,r)
= €(p.r) 3)
= Upne(r) = L(p.r) /\v(p,r) v(p.r)
with
L(p,r) =p>2M + V. (r) — w+ 2Ugn(r) (4)
and the renormalized energies of the excited states

e(p,r) = [(L(p.,r)* = (Ugn (r))*]". (5)

n=n.+nr is the total density. The Bogoliubov amplitudes u
and v are given by the usual relations

1
u(p,r)*= S Lp.r)/e(p.r) + 1}, (6a)

o(p.r)?= S {6 e(pr) 1) (6b)

The density of the excitons in thermally excited states can be
found by integrating over the excited states

&pl| Lp, 1) 1
n(r) =f 8—;[M<n3(p,r) + 5) - 5}(e(p,r)2)

é(p.r)
(7)
where the Bose function is given by
1
np(p.r) = (8)

exple(p,r)/kzT] -1

and O is the Heaviside function which is equal to one when
the argument is positive and zero otherwise. For tempera-
tures not too close to 7., the thickness of the surface of the
BEC cloud is much smaller than the radius §<<R,. Then one
can neglect the kinetic-energy term in Eq. (2) and the system
can by be described quite accurately in the Thomas-Fermi
approximation. Then the density of the condensate is given
byl2

M= Vext(r) - 2le”T
Uy

n.(r) = O(p = Veu(r) = 2Ugng). (9)
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FIG. 1. (Color online) Density (full and dashed lines) and renor-
malized quasiparticle energy (dotted line) for N=1 X 10° excitons in
the trap. T=1 K (left) and 7=0.5 K (right). Parameters are:
@=0.06 peV/um?, Uy=0.75 neV/um?.

For a given chemical potential, Egs. (7) and (9) allow a
self-consistent solution for all the relevant quantities. The
total number of particles N is then found by integrating the
total density over the volume of the trap.

Finally, it should be noted that if the temperature is too
high to allow for a condensate, the HFBP approximation
goes over smoothly into the description of a weakly interact-
ing Bose gas with a chemical potential p= ey +2Uonr.> In
Fig. 1 typical results for the density profiles obtained by this
procedure are shown for the case of a normal system above
T. (left) and with a condensate present (right). The calcula-
tion shows that the diameter of the cloud is somewhat
smaller than predicted by the simple approximation given
above (18 vs 24.5 um).

Excitonic systems have one distinct property compared to
other Bose gases in that they decay by emitting photons un-
der energy and momentum conservation. This can proceed
either directly, whereby momentum conservation requires
that only excitons with the same momentum as the emitted
photons are involved, or with assistance of momentum sup-
plying phonons such that all exciton states can participate in
the optical emission.?' The latter process has been considered
already for a homogeneous Bose gas of interacting excitons
by several authors.!>?® Here it was shown, that the lumines-
cence spectrum is determined by the excitonic spectral func-
tion A(K, w),

(') = 2mS(k = 0)]*6(hw’ - wn,

+ 2 [SK) (o’ — WAK Ao’ - w)  (10)
k#0

with S(k) representing the exciton-photon coupling and ng
being usual Bose function (8). In the case of phonon-assisted
transitions, we have ®'=w—w@,x—Wpponon With 7w,y being
the excitonic band gap of the semiconductor. S(k) can be
assumed to be k independent. The first term in Eq. (10) gives
rise to a & shaped luminescence line at the position of the
chemical potential of the system, the strength of which is
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FIG. 2. (Color online) Luminescence spectra of the direct luminescence process. Upper row with constant particle number N=1 X 10 and
at constant temperature (7=0.5 K) with increasing particle numbers in the trap (lower row). The critical temperature T, is approximately

0.6 K (upper row, middle).

determined by the coupling function at k=0 and the conden-
sate density.

The case of the 3d bulk state with direct exciton-photon
coupling can be treated in the same way with o' =w-w.yx
and S(k)=S,0(k-kg). Kk, is the wavevector of the intersec-
tion of photon and exciton dispersion. Its modulus is given
by ko=w,xn/c, where n is the refraction index and c is the
vacuum velocity of light. Here we see already a remarkable
difference between direct and phonon-assisted luminescence
processes: due to the form of S(k), the condensate itself does
not contribute in the direct luminescence process. However,
we will show that, in case of a potential trap, there will be
indirect signatures of the condensate.

A first-principles calculation of the decay luminescence
spectrum in a trap is a challenging task (see, e.g., Ref. 17 for
the case of a 2d potential trap). Here we proceed in a much
simpler way by noting that the optical wavelength of the
emission (in case of Cu,O about 200 nm) is much smaller
than the size of the exciton cloud with diameter 2R,,. There-
fore, one can apply a local approximation also for the spec-
tral function, which then becomes that of the homogeneous
case'® but now in addition a function of r,

A(r,k, o) =27 u(k,r)?>8hw - ek,r))
—v(k,r)’8how + ek,r))]. (11)

Here e(k,r) are the renormalized energies [Eq. (5)]. This
means that in Eq. (10) the frequency w’ is determined by the
local exciton energy fw,,, =flw—fwyy—Vey(r) while u is the
local chemical potential w;,.=u— V. (r). Obviously, the ex-
ternal potential cancels in the argument of I(w'), which de-
pends only on the global chemical potential of the system, as
it should. The lineshape of the luminescence spectrum is
determined by the renormalized energies of the excited states
of the system, but now evaluated at each point in the trap.

While for the phonon-assisted process, Eq. (11) gives rise
to a smooth spectrum,'® the direct process behaves differ-
ently. Emission will come only from the states with wave
vector ky. The intensity, therefore, reflects only the occupa-
tion of this state, but the spectral position of the line at
u+e(kg,r) directly gives the renormalization of the quasi-
particle energy dispersion due to the condensate. Further-
more, due to the pole of the -function at iw’=u—e(k,r) in
the condensate (v #0) emission occurs also at the low en-
ergy side of the chemical potential. Both effects provide
unique and sensitive footprints of the onset of BEC.

We now apply the foregoing results to study the behavior
of the luminescence line in the case of a weak direct exciton-
photon interaction with parameters adjusted to the case of the
lowest exciton state in Cu,O. Made up from both positive
parity and doubly degenerate valence and conduction bands,
the four exciton states split in a triply degenerate orthoexci-
ton and in a single paraexciton, which is the energetically
lowest exciton state, split off by 12 meV from the ortho
states due to electron-hole exchange.> While the latter are
optically weakly allowed [quadrupole transition, oscillator
strength 3 X 107 (Ref. 22)], the paraexciton as a pure spin
triplet state is forbidden in all orders. Its intrinsic decay is
only possible via an odd-parity optical phonon with I'§ sym-
metry, from which we expect a very long lifetime of these
exciton states'* and thus an almost true equilibrium BEC of
3d excitons.

In a strain trap, the paraexciton becomes weakly allowed
due to mixing with higher lying exciton states, the oscillator
strength remains quite small so that the theory given above is
applicable. The weak variation in the transition probability
with strain across the trap will be neglected. In the typical
experimental situation, one images a small stripe of width Ax
elongated along the z direction centered in the center of the
trap onto the entrance slit of a spectrograph. Integrating over
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the y direction perpendicular to z we obtain a spatially re-
solved spectrum I(z,w). In order to compare with any real
experimental situation, one has to convolute the spectra with
the finite resolution of the spectrograph. For this we take a
slit function of supergaussian shape s(x) < exp(—(x/A)*) with
full width at half maximum 1.825A=75 ueV.

There are three parameters that influence the behavior of
the excitons: trap potential constant ¢, interaction strength
U, and mass M. For the model calculations we assumed the
following parameters M=2.6m,, a=0.06 ueV/um? and
Uy=0.75 neV um?. In Fig. 2 we have plotted a series of
spatially resolved spectra for a range of exciton numbers and
temperatures. While the upper row shows the variation in
temperature at constant N= 10°, the lower series demon-
strates the influence of N at a temperature of 7=0.5 K.
While at T>T.. or equivalently N <N,, the lineshape follows
strictly the parabolic shape of the potential well, as one ex-
pects for a normal gas, below T, the spectrum changes dras-
tically. The low energy side becomes almost flat. The cross-
over, however, is smooth since the flattening starts at a single
point in the trap center. For very high particle number a weak
shoulder develops at the low energy side, which represents
the anomalous luminescence via the negative pole due to the
condensate. In contrast to the case of a noninteracting sys-
tem, the spatial width of the spectrum may become even
larger than the thermal width (compare, e.g., spectra for
N=3x%10° and N=10'"). The quantitative behavior, of
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course, will depend on the fine details of the shape of the
potential trap, but the qualitative features will be the same.
Thus, these drastic changes in the luminescence spectrum
can be considered as a unique footprint of the Bose-Einstein
condensation of excitons in a potential trap.

Finally, we ask whether an experimental realization seems
to be possible with the present knowledge of the exciton
properties in Cu,0. Previous experiments with excitons in
Cu,O (Refs. 6, 7, and 10) have shown that, under quasi-cw
excitation with an absorbed laser power of 50 mW, 2 X 10°
excitons can be put into a trap but with an excitonic tempera-
ture of about 2.5 K which certainly is not enough for a BEC.
Extrapolating the data, one should either increase the pump
power to a value of 10 W or reduce the temperature of the
exciton system below 0.75 K. Both strategies seem to be
possible by present day technology.

We have shown that the luminescence spectrum of the
direct recombination luminescence of excitons in a potential
trap changes in a unique way if a condensate of excitons is
present. This change is independent of the details of the ex-
citonic systems and reflects directly the renormalization of
the quasiparticle energies due to the interaction of the exci-
tons.
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